Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Front Plant Sci ; 15: 1344928, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379952

RESUMO

Introduction: Wheat is a staple food crop for over one-third of the global population. However, the stability of wheat productivity is threatened by heat waves associated with climate change. Heat stress at the reproductive stage can result in pollen sterility and failure of grain development. Methods: This study used transcriptome data analysis to explore the specific expression of long non-coding RNAs (lncRNAs) in response to heat stress during pollen development in four wheat cultivars. Results and discussion: We identified 11,054 lncRNA-producing loci, of which 5,482 lncRNAs showed differential expression in response to heat stress. Heat-responsive lncRNAs could target protein-coding genes in cis and trans and in lncRNA-miRNA-mRNA regulatory networks. Gene ontology analysis predicted that target protein-coding genes of lncRNAs regulate various biological processes such as hormonal responses, protein modification and folding, response to stress, and biosynthetic and metabolic processes. We also noted some paired lncRNA/protein-coding gene modules and some lncRNA-miRNA-mRNA regulatory modules shared in two or more wheat cultivars. These modules were related to regulating plant responses to heat stress, such as heat-shock proteins and transcription factors, and protein domains, such as MADS-box, Myc-type, and Alpha crystallin/Hsp20 domain. Conclusion: Our results provide the basic knowledge and molecular resources for future functional studies investigating wheat reproductive development under heat stress.

2.
Plant Physiol Biochem ; 206: 108233, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38134737

RESUMO

Heat waves associated with climate change seriously threaten crop productivity. Crop seed yield depends on the success of reproduction. However, reproductive development is most vulnerable to heat stress conditions. Perception of heat and its conversion into cellular signals is a complex process. The basic helix loop helix (bHLH) transcription factor, Phytochrome Interacting Factor 4 (PIF4), plays a significant role in this process. However, studies on PIF4- mediated impacts on crop grain yield at a higher temperature are lacking. We investigated the overexpression of GmPIF4b in soybean to alleviate heat-induced damage and yield using a transgenic approach. Our results showed that under high-temperature conditions (38°C/28°C), overexpressing soybeans plants had higher chlorophyll a and b, and lower proline accumulation compared to WT. Further, overexpression of GmPIF4b improved pollen viability under heat stress and reduced heat-induced structural abnormalities in the male and female reproductive organs. Consequently, the transgenic plants produced higher pods and seeds per plant at high temperatures. Quantitative RT-PCR analysis showed that the overexpressing GmPIF4b soybeans had higher transcripts of heat shock factor, GmHSF-34, and heat-shock protein, GmHSP90A2. Collectively, our results suggest that GmPIF4b regulates multiple morpho-physiological traits for better yield under warmer climatic conditions.


Assuntos
Soja , Fitocromo , Soja/genética , Clorofila A , Fenótipo , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas de Choque Térmico , Grão Comestível
3.
Sci Rep ; 13(1): 21759, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066073

RESUMO

Over the past decade, automation of digital image analysis has become commonplace in both research and clinical settings. Spurred by recent advances in artificial intelligence and machine learning (AI/ML), tissue sub-compartments and cellular phenotypes within those compartments can be identified with higher throughput and accuracy than ever before. Recently, immune checkpoints have emerged as potential targets for auto-immune diseases. As such, spatial identification of these proteins along with immune cell markers (e.g., CD3+/LAG3+ T-cells) is a crucial step in understanding the potential and/or efficacy of such treatments. Here, we describe a semi-automated imaging and analysis pipeline that identifies CD3+/LAG3+ cells in colorectal tissue sub-compartments. While chromogenic staining has been a clinical mainstay and the resulting brightfield images have been utilized in AI/ML approaches in the past, there are associated drawbacks in phenotyping algorithms that can be overcome by fluorescence imaging. To address these tradeoffs, we developed an analysis pipeline combining the strengths of brightfield and fluorescence images. In this assay, immunofluorescence imaging was conducted to identify phenotypes followed by coverslip removal and hematoxylin and eosin staining of the same section to inform an AI/ML tissue segmentation algorithm. This assay proved to be robust in both tissue segmentation and phenotyping, was compatible with automated workflows, and revealed presence of LAG3+ T-cells in ulcerative colitis biopsies with spatial context preserved.


Assuntos
Inteligência Artificial , Colite Ulcerativa , Humanos , Algoritmos , Imunofluorescência , Aprendizado de Máquina , Biomarcadores
4.
Curr Pharm Des ; 29(33): 2601-2617, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37916490

RESUMO

The global impact of the COVID-19 pandemic caused by SARS-CoV-2 necessitates innovative strategies for the rapid development of effective treatments. Computational methodologies, such as molecular modelling, molecular dynamics simulations, and artificial intelligence, have emerged as indispensable tools in the drug discovery process. This review aimed to provide a comprehensive overview of these computational approaches and their application in the design of antiviral agents for COVID-19. Starting with an examination of ligand-based and structure-based drug discovery, the review has delved into the intricate ways through which molecular modelling can accelerate the identification of potential therapies. Additionally, the investigation extends to phytochemicals sourced from nature, which have shown promise as potential antiviral agents. Noteworthy compounds, including gallic acid, naringin, hesperidin, Tinospora cordifolia, curcumin, nimbin, azadironic acid, nimbionone, nimbionol, and nimocinol, have exhibited high affinity for COVID-19 Mpro and favourable binding energy profiles compared to current drugs. Although these compounds hold potential, their further validation through in vitro and in vivo experimentation is imperative. Throughout this exploration, the review has emphasized the pivotal role of computational biologists, bioinformaticians, and biotechnologists in driving rapid advancements in clinical research and therapeutic development. By combining state-of-the-art computational techniques with insights from structural and molecular biology, the search for potent antiviral agents has been accelerated. The collaboration between these disciplines holds immense promise in addressing the transmissibility and virulence of SARS-CoV-2.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Inteligência Artificial , Pandemias , Simulação de Dinâmica Molecular , Antivirais/farmacologia , Antivirais/uso terapêutico , Simulação de Acoplamento Molecular , Inibidores de Proteases
5.
Sci Rep ; 13(1): 13268, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582855

RESUMO

In this study, six isolates of Chryseobacterium balustinum were characterized from diseased rainbow trout fingerlings. The virulence characteristics, pathogenicity, and antimicrobial susceptibility pattern of these isolates were investigated. The bacterium showed positive results for catalase, cytochrome oxidase, and aesculin hydrolysis, while negative results were obtained for DNase, gelatinase, methyl red, Voges-Proskauer's reaction, Simon citrate, Hydrogen sulphide, and starch hydrolysis. Amino acid metabolism analysis revealed the inability to metabolize arginine, lysine, and ornithine decarboxylase. Molecular characterization (16S rRNA) and phylogenetic analysis revealed the test isolates as C. balustinum, closely related to strain WLT (99.85% similarity) and C. balustinum P-27 (99.77%). Virulence assay indicated haemolytic activity and biofilm formation by the test bacterium. The challenge test confirmed moderate pathogenicity in rainbow trout and established Koch's postulates. The clinical manifestations of infection included fin erosion, eye and body surface haemorrhage, exophthalmia, and organ liquefaction. The minimum inhibitory concentrations of various antimicrobials ranged from 1 to > 256 µg mL-1. The novel synthetic antimicrobial peptides exhibited MICs of 8 to > 256 µg mL-1, suggesting a potential control method. These findings suggest that C. balustinum is an opportunistic pathogen with moderate pathogenicity in rainbow trout. Further research on the host-pathogen relationship is necessary to understand virulence characteristics and pathogenicity in aquaculture.


Assuntos
Doenças dos Peixes , Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/genética , RNA Ribossômico 16S/genética , Filogenia , Doenças dos Peixes/microbiologia
6.
Front Biosci (Landmark Ed) ; 28(7): 151, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37525917

RESUMO

BACKGROUND: Breast cancer is one of the most common types of cancer among women worldwide, and its metastasis is a significant cause of mortality. Therefore, identifying potential inhibitors of proteins involved in breast cancer metastasis is crucial for developing effective therapies. BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B) is a key regulator of mitotic checkpoint control, which ensures the proper segregation of chromosomes during cell division. Dysregulation of BUB1B has been linked to a variety of human diseases, including breast cancer. Overexpression of BUB1B has been observed in various cancer types, and its inhibition has been shown to induce cancer cell death. Additionally, BUB1B inhibition has been suggested as a potential strategy for overcoming resistance to chemotherapy and radiation therapy. Given the importance of BUB1B in regulating cell division and its potential as a therapeutic target, the development of BUB1B inhibitors has been the focus of intense research efforts. Despite these efforts, few small molecule inhibitors of BUB1B have been identified, highlighting the need for further research in this area. In this study, the authors aimed to identify potential inhibitors of BUB1B from mushroom bioactive compounds using computational methods, which could ultimately lead to the development of new treatments for breast cancer metastasis. METHODS: This study has incorporated 70 bioactive compounds (handpicked through literature mining) of distinct mushrooms that were considered and explored to identify a suitable drug candidate. Their absorption, distribution, metabolism and excretion (ADME) properties were obtained to predict the drug-likeness of these 70 mushroom compounds based on Lipinski's rule of 5 (RO5). Screening these bioactive compounds and subsequent molecular docking against BUB1B provided compounds with the best conformation-based binding affinity. The best two complexes, i.e., BUB1B-lepitaprocerin D and BUB1B-peptidoglycan, were subjected to molecular dynamic simulations. Both complexes were assessed for their affinity, stability, and flexibility in protein-ligand complex systems. RESULTS: The molecular dynamic (MD) simulation studies revealed that lepitaprocerin D has an energetically favorable binding affinity with BUB1B. Results showed that the formation of a hydrogen bond between residues ASN123 and SER157, and lepitaprocerin D had strengthened the affinity of lepitaprocerin D with BUB1B. CONCLUSIONS: This study identified lepitaprocerin D as a potential and novel inhibitor for BUB1B that could be a plausible drug candidate for identifying and controlling the spread of breast cancer metastasis.

8.
Int J Mol Sci ; 24(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37511436

RESUMO

Pokkali is a strong representation of how stress-tolerant genotypes have evolved due to natural selection pressure. Numerous omics-based investigations have indicated different categories of stress-related genes and proteins, possibly contributing to salinity tolerance in this wild rice. However, a comprehensive study towards understanding the role of long-noncoding RNAs (lncRNAs) in the salinity response of Pokkali has not been done to date. We have identified salt-responsive lncRNAs from contrasting rice genotypes IR64 and Pokkali. A total of 63 and 81 salinity-responsive lncRNAs were differentially expressed in IR64 and Pokkali, respectively. Molecular characterization of lncRNAs and lncRNA-miRNA-mRNA interaction networks helps to explore the role of lncRNAs in the stress response. Functional annotation revealed that identified lncRNAs modulate various cellular processes, including transcriptional regulation, ion homeostasis, and secondary metabolite production. Additionally, lncRNAs were predicted to bind stress-responsive transcription factors, namely ERF, DOF, and WRKY. In addition to salinity, expression profiling was also performed under other abiotic stresses and phytohormone treatments. A positive modulation in TCONS_00035411, TCONS_00059828, and TCONS_00096512 under both abiotic stress and phytohormone treatments could be considered as being of potential interest for the further functional characterization of IncRNA. Thus, extensive analysis of lncRNAs under various treatments helps to delineate stress tolerance mechanisms and possible cross-talk.


Assuntos
Oryza , RNA Longo não Codificante , RNA Longo não Codificante/genética , Oryza/genética , Reguladores de Crescimento de Plantas , Fenótipo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica
9.
Pharmaceutics ; 15(6)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37376174

RESUMO

The objective of this study was to investigate the rhombohedral-structured, flower-like iron oxide (Fe2O3) nanoparticles that were produced using a cost-effective and environmentally friendly coprecipitation process. The structural and morphological characteristics of the synthesized Fe2O3 nanoparticles were analyzed using XRD, UV-Vis, FTIR, SEM, EDX, TEM, and HR-TEM techniques. Furthermore, the cytotoxic effects of Fe2O3 nanoparticles on MCF-7 and HEK-293 cells were evaluated using in vitro cell viability assays, while the antibacterial activity of the nanoparticles against Gram-positive and Gram-negative bacteria (Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae) was also tested. The results of our study demonstrated the potential cytotoxic activity of Fe2O3 nanoparticles toward MCF-7 and HEK-293 cell lines. The antioxidant potential of Fe2O3 nanoparticles was evidenced by the 1,1-diphenyl-2-picrylhydrazine (DPPH) and nitric oxide (NO) free radical scavenging assays. In addition, we suggested that Fe2O3 nanoparticles could be used in various antibacterial applications to prevent the spread of different bacterial strains. Based on these findings, we concluded that Fe2O3 nanoparticles have great potential for use in pharmaceutical and biological applications. The effective biocatalytic activity of Fe2O3 nanoparticles recommends its use as one of the best drug treatments for future views against cancer cells, and it is, therefore, recommended for both in vitro and in vivo in the biomedical field.

10.
BMC Plant Biol ; 23(1): 322, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328881

RESUMO

BACKGROUND: Soybean (Glycine max), a major oilseed and protein source, requires a short-day photoperiod for floral induction. Though key transcription factors controlling flowering have been identified, the role of the non-coding genome is limited. Circular RNAs (circRNAs) recently emerged as a novel class of RNAs with critical regulatory functions. However, a study on circRNAs during the floral transition of a crop plant is lacking. We investigated the expression and potential function of circRNAs in floral fate acquisition by soybean shoot apical meristem in response to short-day treatment. RESULTS: Using deep sequencing and in-silico analysis, we denoted 384 circRNAs, with 129 exhibiting short-day treatment-specific expression patterns. We also identified 38 circRNAs with predicted binding sites for miRNAs that could affect the expression of diverse downstream genes through the circRNA-miRNA-mRNA network. Notably, four different circRNAs with potential binding sites for an important microRNA module regulating developmental phase transition in plants, miR156 and miR172, were identified. We also identified circRNAs arising from hormonal signaling pathway genes, especially abscisic acid, and auxin, suggesting an intricate network leading to floral transition. CONCLUSIONS: This study highlights the gene regulatory complexity during the vegetative to reproductive transition and paves the way to unlock floral transition in a crop plant.


Assuntos
MicroRNAs , RNA Circular , RNA Circular/genética , Meristema/genética , Meristema/metabolismo , /metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , MicroRNAs/genética , Regulação da Expressão Gênica de Plantas , Flores/genética , Flores/metabolismo
11.
Curr Pharm Des ; 29(13): 1002-1008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37073145

RESUMO

The production of nanoparticles (NPs) from chemical and physical synthesis has ended due to the involvement of toxic byproducts and harsh analytical conditions. Innovation and research in nanoparticle synthesis are derived from biomaterials that have gained attention due to their novel features, such as ease of synthesis, low-cost, eco-friendly approach, and high water solubility. Nanoparticles obtained through macrofungi involve several mushroom species, i.e., Pleurotus spp., Ganoderma spp., Lentinus spp., and Agaricus bisporus. It is well-known that macrofungi possess high nutritional, antimicrobial, anti-cancerous, and immune-modulatory properties. Nanoparticle synthesis via medicinal and edible mushrooms is a striking research field, as macrofungi act as an eco-friendly biofilm that secretes essential enzymes to reduce metal ions. The mushroom-isolated nanoparticles exhibit longer shelf life, higher stability, and increased biological activities. The synthesis mechanisms are still unknown; evidence suggests that fungal flavones and reductases have a significant role. Several macrofungi have been utilized for metal synthesis (such as Ag, Au, Pt, Fe) and non-metal nanoparticles (Cd, Se, etc.). These nanoparticles have found significant applications in advancing industrial and bio-medical ventures. A complete understanding of the synthesis mechanism will help optimize the synthesis protocols and control the shape and size of nanoparticles. This review highlights various aspects of NP production via mushrooms, including its synthesis from mycelium and the fruiting body of macrofungi. Also, we discuss the applications of different technologies in NP high-scale production via mushrooms.


Assuntos
Agaricales , Anti-Infecciosos , Nanopartículas , Humanos
12.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108609

RESUMO

Increasing food demand by the growing human population and declining crop productivity due to climate change affect global food security. To meet the challenges, developing improved crops that can tolerate abiotic stresses is a priority. Melatonin in plants, also known as phytomelatonin, is an active component of the various cellular mechanisms that alleviates oxidative damage in plants, hence supporting the plant to survive abiotic stress conditions. Exogenous melatonin strengthens this defence mechanism by enhancing the detoxification of reactive by-products, promoting physiological activities, and upregulating stress-responsive genes to alleviate damage during abiotic stress. In addition to its well-known antioxidant activity, melatonin protects against abiotic stress by regulating plant hormones, activating ER stress-responsive genes, and increasing protein homoeostasis, heat shock transcription factors and heat shock proteins. Under abiotic stress, melatonin enhances the unfolded protein response, endoplasmic reticulum-associated protein degradation, and autophagy, which ultimately protect cells from programmed cell death and promotes cell repair resulting in increased plant survival.


Assuntos
Melatonina , Humanos , Melatonina/metabolismo , Estresse Fisiológico , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Produtos Agrícolas/metabolismo
13.
J Fungi (Basel) ; 9(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37108860

RESUMO

Widespread lead (Pb) contamination prompts various environmental problems and accounts for about 1% of the global disease burden. Thus, it has necessitated the demand for eco-friendly clean-up approaches. Fungi provide a novel and highly promising approach for the remediation of Pb-containing wastewater. The current study examined the mycoremediation capability of a white rot fungus, P. opuntiae, that showed effective tolerance to increasing concentrations of Pb up to 200 mg L-1, evidenced by the Tolerance Index (TI) of 0.76. In an aqueous medium, the highest removal rate (99.08%) was recorded at 200 mg L-1 whereas intracellular bioaccumulation also contributed to the uptake of Pb in significant amounts with a maximum of 24.59 mg g-1. SEM was performed to characterize the mycelium, suggesting changes in the surface morphology after exposure to high Pb concentrations. LIBS indicated a gradual change in the intensity of some elements after exposure to Pb stress. FTIR spectra displayed many functional groups including amides, sulfhydryl, carboxyl, and hydroxyl groups on the cell walls that led to binding sites for Pb and indicated the involvement of these groups in biosorption. XRD analysis unveiled a mechanism of biotransformation by forming a mineral complex as PbS from Pb ion. Further, Pb fostered the level of proline and MDA at a maximum relative to the control, and their concentration reached 1.07 µmol g-1 and 8.77 nmol g-1, respectively. High Pb concentration results in oxidative damage by increasing the production of ROS. Therefore, the antioxidant enzyme system provides a central role in the elimination of active oxygen. The enzymes, namely SOD, POD, CAT, and GSH, served as most responsive to clear away ROS and lower the stress. The results of this study suggested that the presence of Pb caused no visible adverse symptoms in P. opuntiae. Moreover, biosorption and bioaccumulation are two essential approaches involved in Pb removal by P. opuntiae and are established as worthwhile agents for the remediation of Pb from the environment.

14.
Diagnostics (Basel) ; 13(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36980449

RESUMO

Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of death in women. Researchers have discovered an increasing number of molecular targets for BC prognosis and therapy. However, it is still urgent to identify new biomarkers. Therefore, we evaluated biomarkers that may contribute to the diagnosis and treatment of BC. We searched TCGA datasets and identified differentially expressed genes (DEGs) by comparing tumor (100 samples) and non-tumor (100 samples) tissues using the Deseq2 package. Pathway and functional enrichment analysis of the DEGs was performed using the DAVID (Database for Annotation, Visualization, and Integrated Discovery) database. The protein-protein interaction (PPI) network was identified using the STRING database and visualized through Cytoscape software. Hub gene analysis of the PPI network was completed using cytohubba plugins. The associations between the identified genes and overall survival (OS) were analyzed using a Kaplan-Meier plot. Finally, we have identified hub genes at the transcriptome level. A total of 824 DEGs were identified, which were mostly enriched in cell proliferation, signal transduction, and cell division. The PPI network comprised 822 nodes and 12,145 edges. Elevated expression of the five hub genes AURKA, BUB1B, CCNA2, CCNB2, and PBK are related to poor OS in breast cancer patients. A promoter methylation study showed these genes to be hypomethylated. Validation through genetic alteration and missense mutations resulted in chromosomal instability, leading to improper chromosome segregation causing aneuploidy. The enriched functions and pathways included the cell cycle, oocyte meiosis, and the p53 signaling pathway. The identified five hub genes in breast cancer have the potential to become useful targets for the diagnosis and treatment of breast cancer.

15.
Diagnostics (Basel) ; 13(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36900109

RESUMO

Cancer is one of the deadliest diseases developed through tumorigenesis and could be fatal if it reaches the metastatic phase. The novelty of the present investigation is to explore the prognostic biomarkers in hepatocellular carcinoma (HCC) that could develop glioblastoma multiforme (GBM) due to metastasis. The analysis was conducted using RNA-seq datasets for both HCC (PRJNA494560 and PRJNA347513) and GBM (PRJNA494560 and PRJNA414787) from Gene Expression Omnibus (GEO). This study identified 13 hub genes found to be overexpressed in both GBM and HCC. A promoter methylation study showed these genes to be hypomethylated. Validation through genetic alteration and missense mutations resulted in chromosomal instability, leading to improper chromosome segregation, causing aneuploidy. A 13-gene predictive model was obtained and validated using a KM plot. These hub genes could be prognostic biomarkers and potential therapeutic targets, inhibition of which could suppress tumorigenesis and metastasis.

16.
Plant Physiol Biochem ; 196: 393-401, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36753825

RESUMO

Soybean (Glycine max), a significant oilseed and protein source for humans and livestock feed, needs short day photoperiod for floral induction. Further, soybean has a paleopolyploid genome with multiple copies of flowering genes adding to the complexity of genetic regulation of flowering, and seed set, especially in investigating the role of the noncoding genome. microRNAs, a class of noncoding RNA, play a regulatory role in plant development. miR156 and miR172 are major components of the essential regulatory hub controlling juvenile and vegetative developments and initiation of reproductive phase change leading to flowering. These microRNAs have been originally isolated and studied from model plant, Arabidopsis. However, a study on soybean microRNAs is lacking. We investigated the temporal expression patterns of gma-miR156a and gma-miR172a and found inversely related - gma-miR156a expression was higher in the vegetative stage, and gma-miR172a expression was elevated under inductive flowering conditions. The functions of gma-miR156a and gma-miR172a were evaluated via heterologous expressions in transgenic tobacco plants (Nicotiana tabacum L.). The analysis of overexpression transgenic lines highlighted that gma-miR156a plays a role in juvenile development via repression of the SPL transcription factor family. In contrast, gma-miR172a plays a pivotal role in the reproductive development phase by down-regulating its target genes, AP2. In addition, ectopic expression of gma-miR156a and gma-miR172a affected plant morphology and physiology during plant growth. Collectively, our results suggest that gma-miR156a and gma-miR172a regulate multiple morpho-physiological traits that could be used to enhance crop yield under changing climate conditions.


Assuntos
Arabidopsis , MicroRNAs , Humanos , /metabolismo , /metabolismo , Arabidopsis/genética , Fatores de Transcrição/genética , Plantas Geneticamente Modificadas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação da Expressão Gênica de Plantas , Flores/fisiologia
17.
Healthcare (Basel) ; 11(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36767006

RESUMO

Radical new possibilities of improved treatment of cancer are on offer from an advanced medical technology already demonstrating its significance: next-generation sequencing (NGS). This refined testing provides unprecedentedly precise diagnoses and permits the use of focused and highly personalized treatments. However, across regions globally, many cancer patients will continue to be denied the benefits of NGS as long as some of the yawning gaps in its implementation remain unattended. The challenges at the regional and national levels are linked because putting the solutions into effect is highly dependent on cooperation between regional- and national-level cooperation, which could be hindered by shortfalls in interpretation or understanding. The aim of the paper was to define and explore the necessary conditions for NGS and make recommendations for effective implementation based on extensive exchanges with policy makers and stakeholders. As a result, the European Alliance for Personalised Medicine (EAPM) developed a maturity framework structured around demand-side and supply-side issues to enable interested stakeholders in different countries to self-evaluate according to a common matrix. A questionnaire was designed to identify the current status of NGS implementation, and it was submitted to different experts in different institutions globally. This revealed significant variability in the different aspects of NGS uptake. Within different regions globally, to ensure those conditions are right, this can be improved by linking efforts made at the national level, where patients have needs and where care is delivered, and at the global level, where major policy initiatives in the health field are underway or in preparation, many of which offer direct or indirect pathways for building those conditions. In addition, in a period when consensus is still incomplete and catching up is needed at a political level to ensure rational allocation of resources-even within individual countries-to enable the best ways to make the necessary provisions for NGS, a key recommendation is to examine where closer links between national and regional actions could complement, support, and mutually reinforce efforts to improve the situation for patients.

18.
Toxics ; 11(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36851022

RESUMO

Urbanization and industrialization are responsible for environmental contamination in the air, water, and soil. These activities also generate large amounts of heavy metal ions in the environment, and these contaminants cause various types of health issues in humans and other animals. Hexavalent chromium, lead, and cadmium are toxic heavy metal ions that come into the environment through several industrial processes, such as tanning, electroplating, coal mining, agricultural activities, the steel industry, and chrome plating. Several physical and chemical methods are generally used for the heavy metal decontamination of wastewater. These methods have some disadvantages, including the generation of secondary toxic sludge and high operational costs. Hence, there is a need to develop a cost-effective and eco-friendly method for the removal of heavy metal ions from polluted areas. Biological methods are generally considered eco-friendly and cost-effective. This review focuses on heavy metal contamination, its toxicity, and eco-friendly approaches for the removal of heavy metals from contaminated sites.

19.
Plant Cell Rep ; 42(2): 337-354, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36653661

RESUMO

KEY MESSAGE: The genomic location and stage-specific expression pattern of many long non-coding RNAs reveal their critical role in regulating protein-coding genes crucial in pollen developmental progression and male germ line specification. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 bp with no apparent protein-coding potential. Multiple investigations have revealed high expression of lncRNAs in plant reproductive organs in a cell and tissue-specific manner. However, their potential role as essential regulators of molecular processes involved in sexual reproduction remains largely unexplored. We have used developing field mustard (Brassica rapa) pollen as a model system for investigating the potential role of lncRNAs in reproductive development. Reference-based transcriptome assembly performed to update the existing genome annotation identified novel expressed protein-coding genes and long non-coding RNAs (lncRNAs), including 4347 long intergenic non-coding RNAs (lincRNAs, 1058 expressed) and 2,045 lncRNAs overlapping protein-coding genes on the opposite strand (lncNATs, 780 expressed). The analysis of expression profiles reveals that lncRNAs are significant and stage-specific contributors to the gene expression profile of developing pollen. Gene co-expression networks accompanied by genome location analysis identified 38 cis-acting lincRNA, 31 cis-acting lncNAT, 7 trans-acting lincRNA and 14 trans-acting lncNAT to be substantially co-expressed with target protein-coding genes involved in biological processes regulating pollen development and male lineage specification. These findings provide a foundation for future research aiming at developing strategies to employ lncRNAs as regulatory tools for gene expression control during reproductive development.


Assuntos
Brassica rapa , RNA Longo não Codificante , RNA Longo não Codificante/genética , Transcriptoma/genética , Genômica , Brassica rapa/genética , Pólen/genética , Pólen/metabolismo , Perfilação da Expressão Gênica
20.
Diagnosis (Berl) ; 10(2): 140-157, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36548810

RESUMO

OBJECTIVES: The introduction of Personalised Medicine (PM) into healthcare systems could benefit from a clearer understanding of the distinct national and regional frameworks around the world. Recent engagement by international regulators on maximising the use of real-world evidence (RWE) has highlighted the scope for improving the exploitation of the treasure-trove of health data that is currently largely neglected in many countries. The European Alliance for Personalised Medicine (EAPM) led an international study aimed at identifying the current status of conditions. METHODS: A literature review examined how far such frameworks exist, with a view to identifying conducive factors - and crucial gaps. This extensive review of key factors across 22 countries and 5 regions revealed a wide variety of attitudes, approaches, provisions and conditions, and permitted the construction of a comprehensive overview of the current status of PM. Based on seven key pillars identified from the literature review and expert panels, the data was quantified, and on the basis of further analysis, an index was developed to allow comparison country by country and region by region. RESULTS: The results show that United States of America is leading according to overall outcome whereas Kenya scored the least in the overall outcome. CONCLUSIONS: Still, common approaches exist that could help accelerate take-up of opportunities even in the less prosperous parts of the world.


Assuntos
Atenção à Saúde , Medicina , Humanos , Estados Unidos , Atenção à Saúde/métodos , Poder Psicológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...